Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 171: 143-154, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37659121

RESUMEN

The search for new sustainable alternatives for plant disease control has gained interest in the last decades. Compost extracts are nowadays considered a remarkable alternative to agrochemicals due to their biopesticidal properties. However, these properties could be affected by the different variables of extraction protocols and by starting compost. This work focused on the physicochemical and biological characterization of compost extracts obtained from a wide range of composted materials and different extraction protocols (CEP). CEP-1 and CEP-4 involved incubation at 20 °C for 48 h and 14 days, respectively; CEP-2 incubation for 24 h at 40 °C; while CEP-3 were incubated for 12 h at 70 °C. Electrical conductivity, pH, total organic carbon (TOC) and phenolic content were determined as well as the actinobacterial count and enzyme profiles related to plant pathogen suppression. Additionally, the influence of the different materials and protocols on the in vitro growth inhibition of Alternaria alternata and Botrytis cinerea was determined. The starting materials and extraction protocols significantly influenced the physicochemical and biological characteristics of extracts. Treatments based on long incubation times at 20 °C, as well as those based on short incubation times at 40 °C, resulted in extracts with increased suppressive properties. However, extracts derived from CEP-3 protocol were characterized by high phenolic and TOC content, low functional biodiversity, and a more discreet antagonistic capacity. Therefore, the development and optimization of suitable extraction protocols could lead to compost extracts with increased phytoprotective capacities, thus becoming an effective and sustainable alternative to chemical inputs.

2.
Sci Total Environ ; 873: 162288, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801343

RESUMEN

The abuse of chemical fertilizers in recent decades has led the promotion of less harmful alternatives, such as compost or aqueous extracts obtained from it. Therefore, it is essential to develop liquid biofertilizers, which in addition of being stable and useful for fertigation and foliar application in intensive agriculture had a remarkable phytostimulant extracts. For this purpose, a collection of aqueous extracts was obtained by applying four different Compost Extraction Protocols (CEP1, CEP2, CEP3, CEP4) in terms of incubation time, temperature and agitation of compost samples from agri-food waste, olive mill waste, sewage sludge and vegetable waste. Subsequently, a physicochemical characterization of the obtained set was performed in which pH, electrical conductivity and Total Organic Carbon (TOC) were measured. In addition, a biological characterization was also carried out by calculating the Germination Index (GI) and determining the Biological Oxygen Demand (BOD5). Furthermore, functional diversity was studied using the Biolog EcoPlates technique. The results obtained confirmed the great heterogeneity of the selected raw materials. However, it was observed that the less aggressive treatments in terms of temperature and incubation time, such as CEP1 (48 h, room temperature (RT)) or CEP4 (14 days, RT), provided aqueous compost extracts with better phytostimulant characteristics than the starting composts. It was even possible to find a compost extraction protocol that maximize the beneficial effects of compost. This was the case of CEP1, which improved the GI and reduced the phytotoxicity in most of the raw materials analyzed. Therefore, the use of this type of liquid organic amendment could mitigate the phytotoxic effect of several composts being a good alternative to the use of chemical fertilizers.

3.
Sci Rep ; 12(1): 13150, 2022 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-35909166

RESUMEN

The use of rhizobacteria provide great benefits in terms of nitrogen supply, suppression of plant diseases, or production of vitamins and phytohormones that stimulate the plant growth. At the same time, cyanobacteria can photosynthesize, fix nitrogen, synthesize substances that stimulate rhizogenesis, plant aerial growth, or even suppose an extra supply of carbon usable by heterotrophic bacteria, as well as act as biological control agents, give them an enormous value as plant growth promoters. The present study focused on the in vitro establishment of consortia using heterotrophic bacteria and cyanobacteria and the determination of their effectiveness in the development of tomato seedlings. Microbial collection was composed of 3 cyanobacteria (SAB-M612 and SAB-B866 belonging to Nostocaceae Family) and GS (unidentified cyanobacterium) and two phosphate and potassium solubilizing heterotrophic bacteria (Pseudomonas putida-BIO175 and Pantoea cypripedii-BIO175). The results revealed the influence of the culture medium, incubation time and the microbial components of each consortium in determining their success as biofertilizers. In this work, the most compatible consortia were obtained by combining the SAB-B866 and GS cyanobacteria with either of the two heterotrophic bacteria. Cyanobacteria GS promoted the growth of both rhizobacteria in vitro (increasing logarithmic units when they grew together). While Cyanobacteria SAB-B866 together with both rhizobacteria stimulated the growth of tomato seedlings in planta, leading to greater aerial development of the treated seedlings. Parameters such as fresh weight and stem diameter stood out in the plants treated with the consortia (SAB-B866 and both bacteria) compared to the untreated plants, where the values doubled. However, the increase was more discrete for the parameters stem length and number of leaves. These results suggest that the artificial formulation of microbial consortia can have positive synergistic effects on plant growth, which is of enormous agro-biotechnological interest.


Asunto(s)
Cianobacterias , Solanum lycopersicum , Consorcios Microbianos , Nitrógeno , Raíces de Plantas , Plantones
4.
Microbiol Res ; 248: 126766, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33873139

RESUMEN

This work highlights the ability of various cyanobacterial extracts from Anabaena spp., Tolypothrix spp., Nostoc or Trichormus, among others genera, to control the incidence of damping-off caused by Pythium ultimum in cucumber seedlings. Protocols applied aimed at the preliminary characterization of the cyanobacterial collection were very useful for predicting their phytotoxic, phytostimulating and biopesticidal capacity. First, the phytostimulatory or phytotoxic potential of a collection of 31 sonicated cyanobacterial extracts was analyzed by calculating the germination index in watercress seeds and the increase or loss of seedling weight. Likewise, the collection was characterized according to its ability to inhibit the growth of P. ultimum by dual culture bioassays and detached-leaf test. Finally, after selecting the most effective extracts, a preventive damping-off bioassay was performed based on cucumber seed biopriming. The strain SAB-M465 showed to be the most efficient strain against the in vitro growth of P. ultimum, while SAB-B912 was more discreet in this regard, but proved to be the most effective as a germination stimulator. Seed biopriming strategy with sonicated extracts of cyanobacteria revealed a remarkable promoter effect in the early stages of plant development, although only SAB-M465 was positioned as an effective control agent against damping-off caused by P. ultimum in cucumber seedbeds.


Asunto(s)
Agentes de Control Biológico/farmacología , Cucumis sativus/microbiología , Cianobacterias/química , Enfermedades de las Plantas/prevención & control , Pythium/efectos de los fármacos , Semillas/crecimiento & desarrollo , Agentes de Control Biológico/aislamiento & purificación , Cucumis sativus/crecimiento & desarrollo , Germinación/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Pythium/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Semillas/microbiología , Sonicación
5.
Biotechnol Rep (Amst) ; 26: e00449, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32368511

RESUMEN

This work clarifies some of the substances involved with the biostimulant effect shown by 28 cyanobacteria isolated from different aquatic environments. The production of salicylic acid, cytokinins, siderophores and phosphate solubilization were analyzed in vitro, as well as the phytostimulant/phytotoxic effect on watercress seeds at two different extract concentrations (0.5 and 0.2 mg mL-1). The most prominent plant growth promoting cyanobacteria were verified in vivo at two different doses (0.5 and 0.1 mg mL-1). 21.4 % and 7.1 % of the tested strains produced siderophores or phosphate solubilization, respectively. The production of salicylic acid was stood out for the strains Calothrix SAB-B797, Nostoc SAB-B1300 and Nostoc SAB-M612, while Nostoc SAB-M251 and Trichormus SAB-M304 were noticeable regard to cytokinin production. The highest values of germination occurred when the extracts were applied in low dose (0.5 mg mL-1). Nostoc SAB-M612 provoked the stimulation of aerial and radicular growth in cucumber seedlings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...